A Rational Approach to Evaluation of Thrombotic Microangiopathy

An Algorithmic Approach

C. Christopher Hook, MD

for the Complement Alternative Pathway – Thrombotic Microangiopathy (CAP-TMA) Disease-Oriented Group
Disclosures

Relevant Financial Relationships
None

Off-Label/Investigational Uses
None

Publication Rights
The contents of this presentation will be published in 2016 in The Mayo Clinic Proceedings. All rights reserved.
Objective

• Use an evidence based algorithm to discriminate between, and correctly diagnose, disorders aggregately described as thrombotic microangiopathies, enabling the selection of appropriate treatment programs.
Clinical Presentation
- Hemolytic anemia + thrombocytopenia
- Organ damage

Histologic Findings
- Schistocytosis
- Microvascular Thrombosis
- Microangiopathy

Pathophysiology
- Endothelial damage
- Coagulation

Pathogenesis
- Complement dysregulation
- Non-complement initiated
CAP-TMA Members

Nephrology/Transplant
- Hatem Amer
- Fernando Fervenza
- Vesna Garovic
- Carl Kramer
- Nelson Leung
- Elizabeth Lorenz
- Cheryl Tran

Hematology/Internal Medicine
- Aneel Ashrani
- Ronald Go
- William Hogan
- Christopher Hook
- Juliana Perez Botero
- Rajiv Pruthi
- Jennifer Yui

Immunology/Transfusion Medicine
- Roshini Abraham
- David Murray
- Jeffrey Winters

Laboratory Medicine/Pathology
- Dong Chen
- Sanjeev Sethi
- Maria Willrich
When to Suspect TMA (All Criteria)

• Micro-angiopathic Hemolytic Anemia (MAHA)
 • Hemolytic anemia
 • Reticulocytosis
 • “Ashes” of hemolysis
 • Schistocytosis
 • > 1% of RBCs in the smear

• Thrombocytopenia
 • Commonly 15 – 50 x 10⁹/L

• If post-hematopoietic stem cell transplant, consider TMA International Working Group criteria*

Other signs and symptoms may include…

- Unexplained bloody diarrhea
- Nausea and vomiting
- Neurological symptoms
- Renal insufficiency or failure
- Complex urinary sediment and/or proteinurea
- (Fever)
Clinical Suspicion of TMA

Differential diagnoses

- Shiga Toxin
- Other causes/precipitating factors
 - Drugs
 - Bevacizumab
 - Bleomycin
 - Clopidogrel
 - Cyclosporine
 - Gemcitabine
 - Mitomycin-C
 - Prasugrel
 - Quinine
 - Sirolimus
 - Suninitib
 - Tacrolimus
 - Ticlopidine
 - Valacyclovir
 - Infection/DIC
 - HIV
 - S. Pneumoniae
 - Cancer
 - Trauma
 - Pancreatitis
 - Transplant
 - Renal
 - Stem cell
 - Rheumatologic
 - Scleroderma
 - SLE
 - APLS
 - Vasculitis
 - Miscellaneous
 - Cancer
 - Malignant HTN
 - Pregnancy
- ADAMTS13 Deficiency
- Complement Dysregulation
- Coagulopathy
 - Hereditary
 - Acquired
- Cobalamin C deficiency
 - DGKε mutation
 - PLG mutation
 - THBD mutation
Recommended Tests in the Evaluation of Thrombotic Microangiopathy

Level 1

Recommended
- ADAMTS13
- AST/ALT
- Complement panel*
- Bilirubin
- Blood smear
- CBC
- Creatinine
- Direct antiglobulin test
- Haptoglobin
- Homocysteine (blood)
- LDH
- PT/aPTT
- Save frozen sample of plasma (15 mL)

As Needed
- ANA
- Shiga toxin stool PCR

Level 2

Complement gene mutations/deletions
- C3
- CD46 (MCP)
- CFB
- CFH
- CFHR1
- CFHR3
- CFHR4
- CFHR5
- CFI

Coagulation protein gene mutations
- Plasminogen
- Thrombomodulin

Complement antibody
- Anti-CFH

Level 3

ADAMTS13 mutation
- If ADAMTS13 < 10%, and
- No ADAMTS13 antibody

Diacylglycerol kinase mutation
- If ADAMTS13 > 10%, and
- Presentation at age < 2 years

*CH50 (functional assay), AH50 (functional assay), C3, C4, C4d, sC5b-9, CFB, CFBb, and CFH levels
Level 1 Tests

Recommended
- ADAMTS13
- AST/ALT
- Atypical HUS complement panel (Test ID AHUSC)
- Bilirubin
- Blood smear
- CBC
- Creatinine
- Direct antiglobulin test
- Haptoglobin
- Homocysteine (blood)
- LDH
- PT/PTT

As Needed
- ANA
- Shiga toxin stool PCR
Clinical Value of ADAMTS13 Activity Measurements

<table>
<thead>
<tr>
<th>ADAMTS13 activity</th>
<th>Clinical value</th>
</tr>
</thead>
</table>
| <5% | Specific for TTP (with rare reported exceptions: Severe sepsis, severe liver disease)
Not sensitive to detect all patients with TTP who may relapse or may benefit from plasma exchange treatment |
| <10% | Sensitive to detect all patients with TTP who may relapse (with rare exceptions)
No specific for TTP; may include patients with sepsis, malignancy, and post-transplantation TMA
Not sensitive to detect all patients with TTP who may benefit from plasma exchange treatment |
| 10-59% | Includes patients with acute disorders of diverse etiologies; also women near term of normal pregnancy
Some patients in this range may benefit from plasma exchange treatment |
| >50% | Normal
Some patients with normal ADAMTS13 activity may benefit from plasma exchange treatment |

ADAMTS13

• Activity
 • Fluorescence resonance energy transfer (FRET)
 • VWF-73, contains ADAMTS13 cleavage site
 • Cleavage of VWF-73 measured using paired fluorescent donor [A2pr(Nma)] and quencher [A2pr(Dnp)] molecules which attach covalently to adjacent amino acids close to cleavage site
 • Uncleaved, completely quenched
 • Cleaved releases fluorescent signal
 • Bilirubin can quench Nma >> falsely low levels
 • 2.9 mg/dL bilirubin >> 20% reduction
 • 11.7 mg/dL >> 80% reduction
 • Hemoglobinemia (visible), DIC >> falsely low levels
ADAMTS13

• Inhibitor screen
 • 2 types of inhibitors: neutralizing and clearing
 • Neutralizing in 70% of idiopathic TTP
 • Can be titered using classic Bethesda method
 • Clearing in 30%
 • Titers via western blot or ELISA assays
 • Test only in appropriate setting
 • Low titer antibodies observed in 3% healthy pts and 15% of pts with SLE
 • In idiopathic TTP >90% + with titers 1:20 – 1:3200
ADAMTS13 Mutation Analysis

- Level 3 Test
- Consider ADAMTS 13 mutation if…
 - ADAMTS13 < 10%, and
 - No ADAMTS antibody is present
- Should include complete sequencing, both exons & introns
 - 140 described mutations, 60% missense
 - 19 single nucleotide polymorphisms identified, 8 reported in pts with hereditary TTP
- ADAMTS13 mutation alone insufficient to trigger TTP
 - Other factors necessary
Level 1 Tests – Complement Panel

Recommended

- CH50 (functional assay)
- AH50 (functional assay)
- C3
- C4
- C4d
- sC5b-9
- CFB
- CFBb
- CFH

- Important to freeze to $\leq -70^\circ C$ within 30 minutes of blood draw to stop complement activation in vitro
Expected Results of Complement Panel in Complement-mediated Thrombotic Microangiopathy

<table>
<thead>
<tr>
<th>Assay</th>
<th>Methods</th>
<th>Significance and Expected Result</th>
</tr>
</thead>
</table>
| CH50 | Hemolytic assay, ELISA, liposomes-turbidimetry | Total hemolytic complement activity; measure of CP
Low |
| AH 50 | Hemolytic assay, ELISA | Measure of total functional activity of AP
Low |
| C3 antigen | Nephelometry, turbidimetry | CP and AP
Normal or low |
| C4 antigen | Nephelometry, turbidimetry | CP
Normal |
| C4d | ELISA | Split product of C4; CP
Normal |
| sC5b-9 | ELISA | Soluble membrane attack complex (sMAC) or terminal complement complex; responsible for cell lysis;
CP and AP
High |
| CFB | Nephelometry, ELISA | Complement factor B; AP
Low |
| CFBb | ELISA | Split product of CFB; AP
High |
| CFH | Nephelometry, ELISA | Complement factor H; AP
Low (suggests CFH-related protein gene deletion and associated with CFH antibody) or normal |
| Anti-CFH | ELISA | CFH antibody; AP
Present or absent |
| CFI | ELISA | Complement factor I; AP
Low or normal |
Level 2 Tests

Complement Mutations

- C3
- CD46 (MCP)
- CFB
- CFH
- CFHR1
- CFHR3
- CFHR4
- CFHR5
- CFI

- > 400 complement mutations identified (www.fh-hus.org)

Coagulation Protein Mutations

- Plasminogen (PLG)
- Thrombomodulin (TMDB)

Complement Antibody

- Anti-CFH
Tissue Biopsy?

• Often not necessary

• Kidney biopsy may be most helpful to rule out other causes of acute renal failure
 • In acute TMA glomeruli show thrombi and schistocytes in glomerular capillaries, mesangiolysis, endothelial swelling and double contour formation along the capillary loops.
 • Immunofluorescence negative for Ig’s and C3
 • Fibrinogen *may* be present within capillaries
 • TTP *may* have platelet rich thrombi, while complement mediated TMA *may* have fibrin rich thrombi
 • In the context of renal transplantation, to exclude rejection

Level 3 Tests

ADAMTS13 Mutation
• If ADAMTS13 < 10%, and
• No ADAMTS13 antibody

Diacylglycerol kinase (DGKE) Mutation
• If ADAMTS13 > 10%, and
• Presentation at age < 2 years
Care Pathway 9
(Coagulation Protein Mutations)

Type of Mutation

- DGK ε
 - Plasma Infusion or PLEX

- PLG
 - Plasma Infusion or PLEX
Care Pathway 1 (General)

Clinical Suspicion of TMA

- History and Level 1 tests
 - PLEX if uncertain etiology; anti-CFH test prior to PLEX

TTP (ADAMTS13 <10%)
- PLEX
 - CP2 (TTP)
 - Plasma infusion if hereditary TTP

Shiga Toxin-Induced
- Supportive care

Hyper-homocysteinemia
- CP3

Age onset <2 years
- Level 3 Test
 - CP4 (Precipitating Factors)
 - CP9 (Coagulation Protein Mutations)

Obvious Precipitating Factors
- CP5

Cause Unknown/Probable Complement Dysregulation
Care Pathway 3 (Hyperhomocysteinemia)

Blood Homocysteine

- **< 3X ULN**
 - Look for Other Causes
 - CP1 (General)

- **> 3X ULN**
 - B12 or Folate Deficient?
 - Yes
 - Replacement
 - No
 - Plasma Methionine
 - Not low
 - Look for Other Causes
 - CP1 (General)
 - Low
 - Cobalamin C Deficiency
 - Hydroxocobalamin, Folate, Betaine
Care Pathway 2 (TTP)

PLEX QD

Add prednisone if congenital TTP unlikely

Daily Hgb, PLT, LDH

Response: PLT > 150 x 2 days w/ normalizing LDH and stable or improving involved organ function

No response after 7 days

Add Rituximab

If no response

PLEX Twice Daily

If no response

PLEX with Cryopoor Plasma

Stop PLEX

Taper Prednisone
Care Pathway 4 (General)

Precipitating Factors

- Drugs
 - Discontinue or substitute
- Infection/DIC
 - Antibiotics
 - Supportive care
- Pregnancy
 - Fetus Viable?
 - Yes
 - Immediate Delivery
 - Refractory or Post-partum TMA
 - CP5 (Probable Complement)
 - No
 - CP5 (Probable Complement)
- Transplant
 - Renal
 - Stem Cell
- Others
 - Treatment of Underlying Conditions

Underlying Conditions
- Yes
- No
 - CP6
 - CP7

CP5 (Probable Complement)

Level 2 Tests

©2015 MFMER | slide-24
Care Pathway 5 (Probable Complement)

Probable Complement Dysregulation

Level 2 Tests

PLEX

Anti-CFH

Continue PLEX

Add Prednisone

CP2 (TTP)

Complement Mutation

CP8

No Mutation or Antibody

Stop PLEX

Eculizumab
Care Pathway 6 (Renal Transplant)

- Renal Transplant
 - Kidney Biopsy
 - Rejection
 - Increase Immunosuppression
 - No Rejection
 - CP1 (General)
Care Pathway 7 (Stem Cell Transplant)

Stem Cell Transplant

Level 2 Tests

Manage Contributing Causes

Acute GVHD
- Increase Immunosuppression

Sinusoidal Obstruction Syndrome
- Defibrotide

Other Causes
- CP4 (Precipitating Factors)

No Contributing Cause or Refractory
- CP2 (TTP)
Care Pathway 8 (Complement Mutations)

Type of Mutation

Loss of Function
- CFH
 - Stop PLEX
 - Eculizumab
- CFI
 - Stop PLEX
 - Eculizumab
- CD46
 - Stop PLEX
 - Eculizumab
- THBD
 - Stop PLEX
 - Eculizumab

Gain of Function
- CFB
 - Stop PLEX
 - Eculizumab
- C3
 - Stop PLEX
 - Eculizumab
Clinical Suspicion of TMA

Differential diagnoses

- Shiga Toxin
- Other causes/precipitating factors
- ADAMTS13 Deficiency
- Complement Dysregulation
- Coagulopathy

Drugs
- Bevacizumab
- Bleomycin
- Clopidogrel
- Cyclosporine
- Gemcitabine
- Mitomycin-C
- Prasugrel
- Quinine
- Sirolimus
- Suninitib
- Tacrolimus
- Ticlopidine
- Valacyclovir

Infection/DIC
- HIV
- S. Pneumoniae
- Cancer
- Trauma
- Pancreatitis

Transplant
- Renal
- Stem cell

Rheumatologic
- Scleroderma
- SLE
- APLS
- Vasculitis

Miscellaneous
- Cancer
- Malignant HTN
- Pregnancy

Hereditary
- Acquired

Hereditary
- Acquired

Cobalamin C deficiency
- DGKε mutation
- PLG mutation
- THBD mutation

©2015 MFMER | slide-29
Recommended Tests in the Evaluation of Thrombotic Microangiopathy

Level 1

Recommended
- ADAMTS13
- AST/ALT
- Complement panel*
- Bilirubin
- Blood smear
- CBC
- Creatinine
- Direct antiglobulin test
- Haptoglobin
- Homocysteine (blood)
- LDH
- PT/aPTT
- Save frozen sample of plasma (15 mL)

As Needed
- ANA
- Shiga toxin stool PCR

Level 2

Complement gene mutations/deletions
- C3
- CD46 (MCP)
- CFB
- CFH
- CFHR1
- CFHR3
- CFHR4
- CFHR5
- CFI

Coagulation protein gene mutations
- Plasminogen
- Thrombomodulin

Level 3

ADAMTS13 mutation
- If ADAMTS13 < 10%, and
- No ADAMTS13 antibody

Diacylglycerol kinase mutation
- If ADAMTS13 > 10%, and
- Presentation at age < 2 years

* CH50 (functional assay), AH50 (functional assay), C3, C4, C4d, sC5b-9, CFB, CFBb, and CFH levels
Thank you!

Questions & Discussion